

Assessment of nitrogen attenuation in the subsurface environment of Manawatu River Catchment, New Zealand

Land Use and Water Quality Conference, Vienna, 21- 24th September, 2015

Ranvir Singh¹, Aldrin Rivas¹, Ahmed Elwan¹, David J Horne¹, Lucy Burkitt¹, Jon Roygard², Abby Matthews², Brent Clothier³, and Mike Hedley¹

¹Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand ² Horizons Regional Council, Palmerston North, New Zealand ³ Plant and Food Research, Palmerston North, New Zealand THE ENGINE

Productive Farms -Economic Benefits and Social Welfare

Reduce Negative Environmental Impacts – Improve Water Quality

Sources and contributions to nutrient loadings?

Source: Environment New Zealand 2007, MfE.

UNIVERSITY OF NEW ZEALAND

Study Area

Manawatu River catchment

- High nitrogen concentrations in surface waters
- > 95% of nitrogen load comes from agricultural areas
- Lack of understanding of nitrogen transport and transformation in the subsurface environment

Study area and experimental sites

UNIVERSITY OF NEW ZEALAND

Nitrogen (N) attenuation factor

Map of N attenuation factors* – Tararua GWMZ, Manawatu

'0' - indicates no nitrogen reduction,

'1' - indicates 100% nitrogen reduction

* Indicative assessment based on the OVERSEER predicted average nitrogen leaching rates (kg ha⁻¹ yr⁻¹) from the major landuses, and measured average nitrogen load (kg yr⁻¹) in river is the subcatchments.

Source: Ahmed Elwan, PhD Student, Massey University

Field Experiments and Monitoring

Four piezometers at depth ranging from 5.8 To 8.7 m below ground level (bgl)

200 cm Suction cups (depth, bgl) 100 cm 60 cm

30 cm

MASSEY No. 1 DAIRY FARM

Field Experiments and Monitoring

Source: Aldrin Rivas, PhD Student, Massey University Massey No. 1 Dairy Farm
Pahiatua site
Woodville site
Dannevirke site

Site	Land use	Depth of piezometers (m bgl)	Rock type	Soil series and type
1	Dairy	6.5 7.5	Al	Manawatu fine sandy Ioam
2	Dairy	4.4 5.4 6.4	(Lo)/Gr	Kopua stony silt loam
3	Beef and sheep	5.0 6.0 7.5	Al	Kairanga silt loam and clay loam
4	Dairy	4.5 6.0 7.5	Al (OR Lo/Gr?)	Kairanga silt loam and clay loam (OR Takapau silt loam?)

Field Experiments and Monitoring

UNIVERSITY OF NEW ZEALAND

Single Well 'Push-Pull' Tests:

Adding Acetylene, Bromide and Nitrate

Groundwater extraction

Single Well 'Push-Pull' Test at Woodville site

Test solution volume: 100 L

Target concentrations: 10 mg L⁻¹ Br⁻; 10 mg L⁻¹ NO₃⁻-N; 50 ml L⁻¹ acetylene Test duration: 7 hours; JANUARY 2015

Single Well 'Push-Pull' Test at Pahiatua site

Test solution volume: 60 L

Target concentrations: 10 mg L⁻¹ Br; 10 mg L⁻¹ NO₃⁻⁻N; 50 ml L⁻¹ acetylene Test duration: 5 hours; MARCH 2015

Research hypothesis - A preliminary hydrogeologic based model to predict river nitrogen loads

River N load = $\sum LU_RT_Area * Ave RZLeaching_{LU} * AFn_{RT}$

Concluding Remarks

Our monitoring, experiments and analysis for upper Manawatu River catchment suggests that

- nitrogen loads measured in the river are significantly smaller than the estimates of nitrogen leached from the root zone;
- denitrification in subsurface environment appears as a key NO₃-N attenuation process in the catchment;
- this nitrogen attenuation capacity appears to vary among the sub-catchments of the catchment.

Concluding Remarks

Upper Manawatu River Catchment, New Zealand Nitrogen Attenuation Capacity

Green > 80 % N reduction Targeted investment in solutions, e.g.

High Capacity Areas: Sustainable Land Use Intensification

Yellow 50 – 80 % N reduction Medium Capacity Areas: Reduce Nitrogen Leaching via Best Effluent and Nutrient Management Practices

Red < 50 % N reduction

Low Capacity Areas: Duration controlled grazing Cut and Carry Systems

Acknowledgements

This is a collaborative project between Massey IAE, Fertilizer and Lime Research Centre (FLRC) and Horizons Regional Council (HRC).

HRC is partly funding this project, and providing in-kind support to field measurements and experimental components of the study.

This funding and in-kind support is greatly appreciated.

